nixos-config/subprojects/bahaghari/lib/math.nix

430 lines
9.1 KiB
Nix

# A little math utility for common operations. Don't expect any high-level
# mathematical operations nor godly optimizations expected from a typical math
# library, it's just basic high school type of shit in all aspects.
{ pkgs, lib, self }:
rec {
# We have the rounding functions here anyways so we may as well include the
# rest of the decimal place changing functions here for consistency.
inherit (builtins) floor ceil;
constants = {
pi = 3.141592653589793238462643383279502884197;
e = 2.7182818284590452353602874713527;
ln10 = 2.302585092994046;
ln2 = 0.6931471805599453;
# The precision target for our functions that need them.
epsilon = pow 0.1 13;
};
# TODO: We may need to export these functions as a separate Nix library.
/* Given a number, check if it's an even number.
Type: isEven :: Int -> Int
Example:
isEven 10
=> true
isEven 13
=> false
*/
isEven = x:
(builtins.bitAnd x 1) == 0;
/* Given a number, check if it's an odd number.
Type: isOdd :: Int -> Int
Example:
isOdd 10
=> true
isOdd 13
=> false
*/
isOdd = x: !(isEven x);
/* Returns the absolute value of the given number.
Type: abs :: Int -> Int
Example:
abs -4
=> 4
abs (1 / 5)
=> 0.2
*/
abs = number:
if number < 0 then -(number) else number;
/* Exponentiates the given base with the exponent.
Type: pow :: Int -> Int -> Int
Example:
pow 2 3
=> 8
pow 6 4
=> 1296
*/
pow = base: exponent:
# Just to be a contrarian, I'll just make this as a tail recursive function
# instead lol.
let
absValue = abs exponent;
iter = product: counter: maxCount:
if counter > maxCount
then product
else iter (product * base) (counter + 1) maxCount;
value = iter 1 1 absValue;
in
if exponent < 0 then (1 / value) else value;
/* Given a number as x, return e^x.
Type: exp :: Number -> Number
Example:
exp 0
=> 1
exp 1
=> 2.7182818284590452353602874713527
exp -1
=> 0.36787944117144233
*/
exp = x:
pow constants.e x;
/* Given a number, find its square root. This method is implemented using
Newton's method.
Type: sqrt :: Number -> Number
Example:
sqrt 4
=> 2
sqrt 169
=> 13
sqrt 12
=> 3.464101615
*/
sqrt = number:
assert lib.assertMsg (number >= 0)
"bahaghariLib.math.sqrt: Only positive numbers are allowed";
let
# Changing this value can change the result drastically. A value of
# 10^-13 for tolerance seems to be the most balanced so far since we are
# dealing with floats and should be enough for most cases.
tolerance = constants.epsilon;
iter = value:
let
root = 0.5 * (value + (number / value));
in
if (abs (root - value) > tolerance) then
iter root
else
value;
in
iter number;
/* Implements the factorial function with the given value.
Type: factorial :: Number -> Number
Example:
factorial 3
=> 6
factorial 10
=> 3628800
*/
factorial = x:
assert lib.assertMsg (x >= 0)
"bahaghariLib.math.factorial: Given value is not a positive integer";
product (lib.range 1 x);
/* Returns a boolean whether the given number is within the given (inclusive) range.
Type: isWithinRange :: Number -> Number -> Number -> Bool
Example:
isWithinRange 30 50 6
=> false
isWithinRange 0 100 75
=> true
*/
isWithinRange = min: max: number:
(lib.max number min) <= (lib.min number max);
/* Returns a boolean whether the given number is within the given (exclusive) range.
Type: isWithinRange :: Number -> Number -> Number -> Bool
Example:
isWithinRange 30 50 6
=> false
isWithinRange 0 100 75
=> true
*/
isWithinRange' = min: max: number:
(lib.max number min) < (lib.min number max);
/* Given a number, make it grow by given amount of percentage.
A value of 100 should make the number doubled.
Type: grow :: Number -> Number -> Number
Example:
grow 4 50.0
=> 2
grow 55.5 100
=> 111
*/
grow = value: number:
number + (percentage number value);
/* Similar to `grow` but only limits to be within the given (inclusive)
range.
Type: grow' :: Number -> Number -> Number -> Number
Example:
grow' 0 255 12 100
=> 24
grow' 1 10 5 (-200)
=> 1
*/
grow' = min: max: value: number:
self.trivial.clamp min max (grow number value);
/* Given a number, return its value by the given percentage.
Type: percentage :: Number -> Number -> Number
Example:
percentage 100.0 4
=> 4
percentage 200.0 5
=> 10
percentage 55.4 58
=> 32.132
percentage 0 24654
=> 0
*/
percentage = value: number:
if value == 0
then 0
else number / (100.0 / value);
/* Given a number, round up (or down) its number to the nearest ones place.
Type: round :: Number -> Number
Example:
round 3.5
=> 4
round 2.3
=> 2
round 2.7
=> 3
*/
round = round' 0;
/* Given a tens place (10 ^ n) and a number, round the nearest integer to its
given place.
Type: round' :: Number -> Number -> Number
Example:
# Round the number to the nearest ones.
round' 0 5.65
=> 6
# Round the number to the nearest tens.
round' 1 5.65
=> 10
# Round the number to the nearest hundreds.
round' 2 5.65
=> 0
# Round the number to the nearest tenth.
round' (-1) 5.65
=> 5.7
*/
round' = tens: number:
let
nearest = pow 10.0 tens;
difference = number / nearest;
in
floor (difference + 0.5) * nearest;
/* Given a base and a modulus, returns the value of a modulo operation.
Type: mod :: Number -> Number -> Number
Example:
mod 5 4
=> 1
mod 1245 4.5
=> 3
mod 19 (-12)
=> -5
*/
mod = base: modulus:
remainder ((remainder base modulus) + modulus) modulus;
/* Similar to the nixpkgs' `trivial.mod` but retain the decimal values. This
is just an approximation from ECMAScript's implementation of the remainder
operator.
Type: remainder :: Number -> Number -> Number
Example:
remainder 4.25 2
=> 0.25
remainder 1.5 2
=> 1.5
remainder 65 5
=> 0
remainder (-54) 4
=> -2
remainder (-54) (-4)
=> -2
*/
remainder = dividend: divisor:
let
quotient = dividend / divisor;
in
dividend - ((floor quotient) * divisor);
/* Adds all of the given items on the list starting from a sum of zero.
Type: summate :: List[Number] -> Number
Example:
summate [ 1 2 3 4 ]
=> 10
*/
summate = builtins.foldl' builtins.add 0;
/* Multiply all of the given items on the list starting from a product of 1.
Type: product :: List[Number] -> Number
Example:
product [ 1 2 3 4 ]
=> 24
*/
product = builtins.foldl' builtins.mul 1;
# The following trigonometric functions is pretty much sourced from the following link.
# https://lantian.pub/en/article/modify-computer/nix-trigonometric-math-library-from-zero.lantian/
/* Given a number in radians, return the value applied with a sine function.
Type: sin :: Number -> Number
Example:
sin 10
=> -0.5440211108893698
sin (constants.pi / 2)
=> 1
*/
sin = x: let
x' = mod (toFloat x) (2 * constants.pi);
step = i: (pow (-1) (i - 1)) * product (lib.genList (j: x' / (j + 1)) (i * 2 - 1));
iter = value: counter: let
value' = step counter;
in
if (abs value') < constants.epsilon
then value
else iter (value' + value) (counter + 1);
in
if x < 0
then -(sin (-x))
else iter 0 1;
/* Given a number in radians, apply the cosine function.
Type: cos :: Number -> Number
Example:
cos 10
=> -0.8390715290764524
cos 0
=> 1
*/
cos = x: sin (0.5 * constants.pi - x);
/* Given a number in radians, apply the tan trigonometric function.
Type: tan :: Number -> Number
Example:
tan 0
=> 0
tan 10
=> 0.6483608274590866
*/
tan = x: (sin x) / (cos x);
/* Given a number in radians, convert it to degrees.
Type: radiansToDegrees :: Number -> Number
Example:
radiansToDegrees bahaghariLib.math.constants.pi
=> 180
radiansToDegrees 180
=> 10313.240312355
*/
radiansToDegrees = x:
x * 180.0 / constants.pi;
/* Given a number in degrees unit, convert it to radians.
Type: degreesToRadians :: Number -> Number
Example:
degreesToRadians 180
=> 3.141592653589793238462643383279502884197
degreesToRadians 360
=> 6.283185307
degreesToRadians 95
=> 1.658062789
*/
degreesToRadians = x:
x * constants.pi / 180.0;
}